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A conservative difference scheme is given for a model of nonlinear dispersive waves. 
Convergence and stability of the scheme are proved. By means of this scheme, we explore 
numerically the relationship between the boundary data and the amplitudes and number of 
solitary waves it produces. ‘cl 1991 Academic Press, Inc. 

1. INTRODUCTION 

In recent years, a vast amount of work and computation has been devoted to the 
initial value problem for the KdV equation. Under the assumption of small 
amplitude and large wavelength, the KdV equation was derived for water waves 
and it is similarly justifiable as a model for long wave in many other physical 
systems. However, in view of the order of magnitude of the terms in KdV equation, 
another equation for nonlinear dispersive waves can be derived, 

u,+ lJ,+puu,-1’-‘~ u,,,=o, (1.1) 

where /I z 0 and 7 > 0 are constants. Eq. (1.1) and the KdV equation are advocated 
as models for the same physical phenomena and are valid to the same accuracy. 

Eq. (1.1) has been studied by several workers. Mathematical theory for the equa- 
tion was considered in [ 1, 2, 51. Bona et LIZ. [Z] have compared the equation with 
the results of some experiments. Several numerical methods for solving Eq. (1.1 j 
have been developed [4-g, lo]. In this paper, we present a conservative difference 
scheme for Eq. (l.l), which keeps two conservation laws that the differential equa- 
tion (1.1) possesses. The conservative property of the difference scheme is signifi- 
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cant, especially, when solitary solutions are studied numerically. Convergence and 
stability of the scheme are proved. 

Solitary waves induced by boundary motion were studied for the KdV equation 
kr Chu er nl. 131. Their results are interesting, and we shall also study the solitary 
waves induced bj boundary motion for Eq. (1.1). by means of our conservativs 
difference scheme. 

2. NUMERICAL METHOD 

We consider the initial-boundary value problem for the mode! of not-&near 
dispersive waves 

CiI.r=O=O, e! I .’ = ii, = 0, 

UrcD= Uo(x), o<s<s,. 

As usual, the following notations are used 

where h = X,/J and 7 are step sizes of space and time. respectively. 
~~lti~~yi~g (21) by Cr and integrating it from 0 to X,, it is easy to get a ccnser~~ 

vation have for the problem (2.1))(2.3) 

Using a customary designation, we shall refer to the functional E(r) as xhe energyr 
integral, although it is not necessarily identifiable with energy in the originai 
physical problem. 
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Our proposed difference scheme for problem (2.1 t(2.3) is 

(u;+‘);+(y+‘,‘2 )*-:-2(u:+l),.,;+~jL’l+‘;?.(rl;+l;*),+C(ul+’.2)*]*) 

= 0, ldjdJ-l,n=0,1,2 )...) (2.5) 

u;;=o, ulJ=o (2.6) 

u; = UO(Xj), l<jdJ-1. (2.7) 

Multiplying (2.5) by 2. U:‘+“‘2 and summing over j, we have 

f~~l~(u;+l)2-(~;)2~+~~~‘(U~+l:2)~.C’;tl~2 

J=l j= 1 

= 0, 1 <j=sJ- 1, n=o, 1, 2, . ..) (2.8) 

In view of difference properties and the boundary conditions (2.6), we obtain 

j=O 

, J-1 
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Combining this result with (2.8) yields 

f; = 0, 1, 2, ..~, 

i.e.. 

Comparing (2.9) with the conservation law of energy (2.4) that the differential 
problem (2.1)-(2.3 j possesses, we can see the scheme (2.5))(2,7) preserves a discrete 
analog of this conservation law. For this reason we call the scheme (2.5 )-ff.7) 
conservative. Furthermore, we consider the initial value problem for Eq. ( 1.1) 

Assume 0: C:, U, --f 0 when 1.~1 --, x. It is obvious that rhe conservation law of 
energy is valid for the problem (2.10), (2.11) and the corresponding difference 
problem (2.5), (2.7). Integrating (2.10) for x, we obtain another conservation la-w 
for the problem (2.10), (2.11), 

Summing (2.5) over j we find 

Therefore, for the initial value problem (2.10), (2.1 I ), the conservative scheme 
preserves discrete versions of two basic conservation laws. The difference scheme 
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(2.5)-(2.7) is a system of nonlinear algebraic equations. We give an iterative 
method to solve it by the formulas 

A.; + ‘(S’ . U;-+:” + 11 + BT+ l(S). U’f+“S+ 1) + q+ l(s) _ q’;‘“+l) ,, 
J 

= &-‘,I + l(s) 
I 7 IdjGJ-l,n=0,1,2 ,..., (2.14) 

u;=o, ul;=o, n = 0, 1) 2, . ..) (2.15) 

UJ! = c~o(u~jj, u;+ l(O) = u;, l<jdJ-l,n=0,1,2 ,..., (2.16) 

where 

B’! + l(s) = 1 + 
J ;+ 

Fi”+lis)= [ 
--_-- i2 4;, & (q?’ + q+ J] . u,;, l 

+ I+$- [ ~(“:‘::I”+u;+,)+~(U;;:‘“‘+(/:‘~,)] 

The time needed to compute A;’ I(‘), By’ l@‘, CT + I”‘, and FRf lcr) can be J 

reduced by not unnecessarily computing quantities like 

they are not recomputed unnecessarily. Equations (2.14)-(2.16) are a system of 
linear tridiagonal equations for U;““+ “, aftger UT+ I(5) are obtained. Hence, 
lJ?+ Ifs+” can be obtained as the formulas / 

U.7’ ‘(s+ 1) = (juv;;;‘s+ 1’ + i%, j=J- 1, J-2, . . ..l. 

UJ n+l(S+l)=O 
(2.17) 

9 

where 
nt I(s) 

r - -A, 
‘j - B”+ lb) + C;+‘(s). tji 1’ 

j= 1, 2, . ..) J- 1, 
J 
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0ur experience has been that the iterative method (2.14 j-( 2.17) is quickiy 
convergent for solving several systems of nonlinear equations. which are deduced 
from the differential equations. 

3. SOLITARY WAVES INDUCED BY QUNDAR’J MQTIQN 

Until now, most work has been devoted to the behavior of solitary waves in 
unbounded domains. However, the mathematical models for many real physical 
phenomena are precisely initial boundary value problems of partial differential 
equ.ations. For example, the production and propagation of water waves in a 
channel belongs to this case. Now we study these problems numerically and hope 
that interesting physical phenomena and mathematical properties can be uncovered 
by means of computational results. 

In this section, the initial boundary value problem (If)-(2.3 j is modiced to 

u, + u, + uu, - Il’,,, = 0. O<.Y<.Y,, ;>o. (,:.;a 

UI,,,=f,ir), t.~/-;=,L=O: t > 0; (3.2) 

LqrzO= Uo(xj, o<.u<.u;. {3,3) 

and right boundary xI_ is taken large enough to ignore its in uence. Our intemion 
is to explore the relationship between the amplitudes and numbers of the solitary 
waves produced and the boundary data given. 

First, we take U,(x) E 0 and compute the solitary waves produced by a boundary 
pukse fr(t) of identical amplitude A, = 2 and duration db = 20 (See Fig. 1)~ 

In computations, we take It =0.4, ~~0.1 and the results are shown In Tabi i. 

FIG. I. Boundary puke .f!( i) given at s = 0. 
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TABLE I 

Solitary Waves Induced by a Boundary Pulse 

t 

2.5 2.2337 
5.0 1.5614 2.7619 

10.0 2.5218 3.2387 
20.0 1.8560 2.3678 2.7327 3.4381 
40.0 0.9804 2.3 173 3.0720 3.4893 3.7065 
60.0 0.9803 2.3 154 3.068 1 3.5108 3.7478 
80.0 0.9802 2.3146 3.0665 3.5128 3.7622 

100.0 0.9801 2.3140 3.0660 3.5120 3.7620 

Amplitude of solitary wave 

1 2 3 4 5 

Figure 2 shows the solitary waves at t = 100. There are live solitary waves in this 
case. The amplitude of the last solitary wave is less than 2, since the boundary pulse 
was cut off during its formation at t = 20. 

Velocities of computational solitary waves and their relationship with the 
amplitudes are given in Table II. 

The single solitary wave solution of Eq. (3.1) has the form 

U = A . Sech’(kx - it + J), 

where A = 3a2/(1 -a’), K= ia, w=u/2(1 -a’), and a and 6 are arbitrary 
constants. It is clear that the velocity u of the solitary wave can be written as 

0 1 0=k=1-a2= 1,;. 

FIG. 2. Solitary waves at f = 100. 
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FIG. 3. Initial pulse v,(x) given at I = !I 

Table If shows that the velocity of every solitary wave is equal to one plus a third 
of its amplitude. This velocity is precisely the velocity of a single solitary wave of 
sech-squared shape. 

For the identicai pulse amplitude A, = 2, solitary waves for various durations are 
given in Table III. When duration is fixed at At = 20, solitary w-aves for severa! 
pulse amplitudes are given in Table IV. 

As a comparison, we take fi( t) c 0 and compute the solitary waves produced by 
initial value U,(X). The pulse U,(x) is located in interval [z-~ 1 X-J and has identical 
amplitude A, = 2 (see Fig. 3). Solitary waves for various initial pulses are given in 
Table V. Figure 4 shows the solitary waves for .-cl = 20.0. X, = 31.6. 

FIG. 4. Solitary waves produced by initial value UO(x) and xi = 20.0, x2 = 31.6. 



TABLE II 

Velocities of Solitary Waves for I > 40 

Solitary wave Amplitude A l+Aj3 Velocity 

1 0.98 1.3266 1.33 
2 2.31 1.7700 1.77 
3 3.07 2.0233 2.02 
4 3.51 2.1700 2.17 
5 3.76 2.2533 2.25 

TABLE III 

Solitary Waves for Various Durations of the Boundary Value Pulse with A,, = 2.0 

Amplitude of solitary wave 

Duration Time 

dt t 1 2 3 4 5 6 7 8 Y 10 11 12 

50.0 200.0 0.6753 1.5216 2.0845 2.5240 2.8351 3.1618 3.3532 3.4816 3.5965 3.6987 3.7844 3.8643 

35.0 150.0 0.1652 1.3704 2.1522 2.6881 3.0738 3.3485 3.5843 3.6902 3.8110 

20.0 100.0 0.9801 2.3140 3.0660 3.5120 3.7620 

10.0 100.0 0.4773 2.5906 3.5855 

4.0 100.0 2.5164 

3.0 100.0 1.8588 

2.0 30.0 1.0842” 

’ There is not stable solitary wave. 

TABLE IV 

Solitary Waves for Several Amplitudes of the Boundary Value Pulse with Ar = 20.0 

Amplitude of solitary wave 

Pulse amplitude Time 

Ao t 1 2 3 4 5 6 7 8 9 10 

5.0 100.0 0.7249 4.4651 5.9871 6.9481 7.7501 8.3676 8.8621 9.1220 9.2356 9.3393 

1.0 100.0 0.8056 1.4709 1.8314 

0.5 100.0 0.4962 0.8457 

TABLE V 

Solitary Waves for Various Initial Pulses 

Initial pulse Amplitude of solitary wave 
Time 

Xl Hz t 1 2 3 4 5 6 7 8 9 

20.0 36.0 100.0 0.6253 1.0512 1.5236 2.0074 2.4742 2.9143 3.2368 3.5669 3.7551 
20.0 31.6 100.0 0.6151 1.0810 1.7078 2.3437 2.9221 3.4081 3.7291 
20.0 30.0 100.0 0.6054 1.2781 2.0012 2.7025 3.2974 3.6963 

368 
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These tables and figures demonstrates a steady non-oscillating, long pulse at the 
boundary can produce a train of stable solitary waves whose amplitudes 
progressively decrease. The amplitudes of the induced waves are governed mainij 
by the amplitude of the boundary pulse, while the number of the induced waves 
depends on the duration and amplitude of the boundary pulse. Furthermore, the 
initial pulse can also produce a train of stable solitary waves, which is similar tc 
that produced by the boundary pulse. 

4. DISCUSSION FOR NUMERICAL METHOD 

(i) Comergmse and Srabilitl. of the Difference Scheme 

Now, we consider convergence and stability of the conservative difference scheme 
(2.5)-(2.7). 

LEMMA 2. Assume $( tj 3 0 and there exist consiatm C3 md C, s&l r/m 

“rao#I 1 consider ordinary differential equation 

v’(t) = C,cp(t). CPP) = c3 

Its exact solution is q(t) = C, . C”“. It follows from q(t) 3 0, 
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k=O 

n--l n - 1 

3r c q’(ks)>z.C,. c rp(kT) 
k=O k=o 

n-l 

v(nT) 3 c, + 5. c, . c cp(kT). 
k=O 

Now, we are to prove by contradiction that q(nt) > $(nr). Assume 

n <nl G [TIT], 

n=n,. 

Then 

iI- I n,- 1 

4'D(f'hT)-$(n,T)~C,+TC, c cp(kT)-cCj-Tc4 1 $(kT)>o. 
k=O k-0 

This is in contradiction to $(nls) > q(n,z). Therefore, the lemma is proved. 

LEMMA 3. Assume U,(x) E HA[O, xd]; then there is the estimate for the solution 
of the difference scheme (2.5)-(2.7), 

nvhere Co is a constant independent of h and t. 

ProojI Without loss of generality, we can assume that k is chosen so small that 
there are 

J-1 

(IUOl(‘=h 1 [U,(q)]’ 
j-l 

Thus, the conservation formula (2.9) yields 

II U”ll < Const., /I c’~ll d Const. 
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Tt follows from the Lemma 1 that 

THEOREM 1. Assume U,JX)E Hb[O, .rL] md for the durion of ?he problem 
(Z.i)-(2.3). U(Y: r) E C’4.3’. Then the solution of the consewatiue scheme (23~(I..?) 
comerges to the solutiorz of the problem (2.1)-(2.3 I wifiz oder O(? + h’) bj: ia: 
~7orn-7. 

Pvoclf. Substituting the solution of the differential equation U(.x, t) into the 
scheme (2.5) and making Taylor’s expansion, we have from (2.5) 

1 1 ) .-. 
2 

[U(jh, (n+ ljt)+ u(jl2, 77~)3,+- [(U(jh, (n+ %jrj+ U(jlz7 n7)j2] 1) 
4 ‘i 

where R; is the truncation error and maxi G j G i-, /R; j < &nst . (7: -+ ;I’ ;, 
Odn~ d IF. Let E; = U(.J’k, 77~)- Uy; then it follows from (2.5) and (4.1) that 

In view of difference properties and boundary condition, we have 
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_ u;+1?2.(u~;+‘I12)i ,,;+I’2 
I 

J-l J-l 

=iz, (&~““)2.(U;t1~2)i+~~, k [U(jh, (n+ l)s)+ U(jh,mj] 

. (E; + 1,‘q2 . $I + I,‘2 

J-l 

= - c [(q+ w):la. uI’+ Ii2 
j=l 

- 
t CU(jh, (n+ 1)~)s U(jh, w)] .E;+~,~}~-E;+~‘~, 

= 1:: {i C Wh, ( n-t 1)7)-t U(jh, nr)] .E;+~‘~ 

.c 

J-1 

.&n+‘:2+ c [Uin+li2.Ejn+l,2,,~.E:r+l,2 .I 
j=l 

= ; [U(jh, (n + 1)r) + U(jh, m)] .&;+I,‘2 
> L 

Multiplying (4.2) by 2~J+l’~, summing it up for j and using the above deduction, 
we obtain 

+$E{ -Jf’ [(E~+I~2)2]*.U:+1.‘2_ 
J-l 

1 (E;+l..?)i.E;~+1”2~ u;+1:2 

j-l j=l 1 

J-l 

=2. c R; .$‘-2; 
j=l 

i.e., 



E:+l<E;+ T. max //R”l(‘+ C,,r 1 Ef;. 
oca<[r~r] kc! 

Assume c,, . T < 4; then there is 

It follows from (4.4) and Lemma 2 that 

We have. in view of Lemma 1. 

It yields convergence. 

THEOREM 2. Assume Cro(.u) E Hi[O, xL] and 5 is chosen prc~periy; iiwn rhe coI1smr- 

D&W scheme (2.5)-(2.7) is stable for the initial uahe 61’ I.,, form. 

Pro~j;f: Suppose there are solutions fo the difference equations UJ’ and c’lii 
-which satisfy both the difference scheme (2.5) and the boundary condition i2,f:j. 

ue, CT/” = U,(X~~, 89 = B,(.x~). Let 8;: = “J - 0;. Similarly to the proof of 
Theorem 1, we can establish equations and the initial condition satisfied by $ and 
obtain 

rt+ I 

E ;+‘,<E;+C,,.T c E:. 
k=O 
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Assume C,, . T < 4; then there is 

i.e., the difference scheme is stable. 

(ii) Comparison with Crank-Nicolson Scheme 

The first scheme one might consider using to solve problem (2.1 k(2.3) is the 
Crank-Nicolson (C-N) scheme: 

(ui”+‘)i-~1’~‘.(U~+1)~,~+f(l+pu~+’)(u~+1),+~(1+~u~~)(u~~),=o. (4.7) 

We compare the conservation scheme (2.5) with the C-N scheme (4.7), through 
computing the initial value problem (2.10), (2.11). Taking j = 1, 7 = 1, and U,(x) = 
3 . Sech*( (,/z/4)(x - 20)), the exact solution of a single solitary wave described by 

U(s . t) = 3 Seth’ . (4.8) 

TABLE VI 

Computational Results at f = 100 and h = 0.5 

A I’ c41 cq2 
CPU 
time Error Error Error Error 
(s) N Value (% ) Value (O/O) Value (%j Value (X) 

Exact 
solution (4.8) 3.0000 2.0000 16.9705 37.0996 

0.5 Conservative 
scheme (2.5) 134.4 8 2.9088 -3.04 1.9600 -2.00 16.9708 0.0017 37.1173 0.0478 

C-N scheme 
(4.7) 139.6 10 2.8736 --4.21 1.9550 -2.25 16.9709 0.0024 37.2129 0.3055 

1 Conservative 
Scheme (2.5) 99.7 12 2.7792 -7.36 1.9100 -4.50 16.9713 0.0047 37.1585 0.1589 

C-N scheme 
(4.7) 133.1 19 2.6812 -10.63 1.9050 -4.75 16.9732 0.0159 38.5434 3.8917 

2 Conservative 
scheme (2.5) 71.3 17 2.4597 -18.01 1.8100 -9.50 16.9698 -0.0041 37.2049 0.2838 

C-N scheme 

(4.7) cx 

Note. “Error” stands for relative error. N denotes the number of iterations in one step time. A and 
V are amplitude and velocity, respectively. The iterative algorithm of the C-N scheme (4.7) is divergent 
for z = 2. The “~9~” and “cq?” are two conservative quantities: 

J--l 
cql = h c c”;, 
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The computational resdts for the solution (4.8) are given in Tabk VI. h COmpleta- 

tiOn, the C-N scheme (4.7) is solved by an iterative method which is similar to the 

method (2.14)-(2.17) for the conservative scheme (2.5). 
Table VI demonstrates that the conservative scheme (2.5) can keep two conser- 

vative quantities and is more accurate than the C-N scheme (4.7). Furthermore, 
scheme (2.5) requires fewer iterations and less CPU time than the C-N scheme. 
IIence, the conservative scheme (2.5) is more efficient than the C-N scheme (4.7). 

(iii) Convergence 0f Iterations 

In order to solve the scheme (2.5), the iterative method (2.14Q-(2.17) was givea 
in the Section 2. Convergence of the iterative method dependent on the step sizes 
h and r. But, our practical computation shows that the iterative method is con- 
vergent for various step sizes, which can be taken to ensure necessary accuracy of 
the approximation solution. The number of iterations is 3-8 for kr 6 0.5 and z < 0.5 
and 17 for h = 0.5 and T = 2. Therefore, the iterative method (2.14)-(2.17) is suitable 
and efficient. 
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